Observability

on

Service Mesh

= P&

Apache SkyWalking €ll#8 A.. PPMC

EE?

~—

Microsoft MVP

ARG BARRARER

Tetrate

CLOUD NATIVE

COMPUTING FOUNDATION

Observability

CNCF Landscape

CLOUD NATIVE

COMPUTING FOUNDATION

CNCF Incubating

o P

COSCALE

fluentd

CNCF Incubating

LOGGLY

Metric, Tracing, Logging

lraced Application Cluster

PHP, NodelS, C#, etc.
or Java Application

or

Instrument SDK
SkyWalking Agent

| PHP, NodeJs, C# etc. |
or I Java Application
or

——————

Instrument SDK

|
—t—|
'

| SkyWalking Agent
} '

SkyWalking Trace Data Protocol

\J

HTTP | gRPC

Analysis and Aggregation
= KN
v

running in physical machines, VM, k8s, mesos or cloud

Java Application

or
" Database

SkyWalking Agent

SkyWalking Ul

{

GraphQL + HTTP

SkyWalking iollector Cluster .

Traditional Observability

() ServiceMesher | IT.

i

ll

How does agent work?

PreparedStatement updateSales = con.prepareStatement (

"UPDATE COFFEES SETSALES = ? WHERE COF_NAME LIKE ? ");
updateSales.setInt(1l, 75);
updateSales.setString(2, "Colombian");
updateSales.executeUpdate();

PreparedStatement updateSales = con.prepareStatement (

"UPDATE COFFEES SETSALES = ? WHERE COF_NAME LIKE ? ");
tracer.cacheSQL("UPDATE COFFEES SETSALES = ? WHERE COF_NAME LIKE ? ");
updateSales.setInt(1l, 75);
tracer.cacheDbParam(1l, 75);
updateSales.setString(2, "Colombian");
tracer.cacheDbParam(2, "Colombian");

Span span = tracer.createSpan().start();
updateSales.executeUpdate();

span.tag(Tags.Basic.TYPE, "Database");

span.tag(Tags.SQL, tracer.getCachedSQL()):
span.tag(Tags.SQL PARAMETERS, tracer.getCachedDbParams());
span.stop();

Application Performance
Management

 Agent based
 Manipulate source codes
e Auto
e Manual

 CPU, Memory, Latency Cost, GC

dAPM REE AEN O WRSE TOWREEms BORRHEms BANRKEms 90%Line R % CPU memory Throughput /sec
none

Zipkin

Skywalking

Pinpoint
none
Zipkin
Skywalking
Pinpoint
none
Zipkin
Skywalking

o O O O O O o o o o o o

Pinpoint

Cost of open source solutions

Don’t consider this as an competition. It is a fact that everyone costs resources.

() ServiceMesher | [T2dniss

What change?

Container, K8s and Service Mesh

Proxy and Sidecar

Sidecar

Sidecar

() ServiceMesher | [T2dniss

Istio + Envoy

Representative Service Mesh implementor

_ Control flow during
request processing

Config data to
Envoys

HTTP/1.1, HTTP/2,
gRPC, TCP with or
without TLS

Service A

Control Plane API

TLS certs to
* Envoy

Policy checks\,\"\\
telemetry

HTTP/1.1, HTTP/2,
gRPC, TCP with or
without TLS

Service B

() ServiceMesher | IT.

2

ll

Qg,D By
LT
&

&
CZ*
APH

SkyWalking 6.0
Observability Analysis Platform

Tracing Metric | Logging

. ‘< ‘.‘ e Skywa|k|ng (’@ envoy ﬂ i|‘j,xL|NKERD SkyWaIklng -
SkyWalking Metrics
Service Mesh/Proxy Probe |

[|

Traces in diff formats Logstash

Receiver in gRPC/HTTP
Skywalking

]| Tracing Metric

| oo .

uery Core Storage Implementors

SkyWalking Observability Analysis Platform

OAP > APM

Core Concepts

e Service. Represent a set/group of workloads to provide the
same behaviors for incoming requests. You can define the
service name when you are using instrument agents or SDKs.
Or SkyWalking uses the name you defined in platform such as
Istio.

e Service Instance. Each one workload in the Service group is
named as an instance. Like pods in Kubernetes, it doesn't
need to be a single process in OS. Also if you are using
instrument agents, an instance is actually a real process in OS.

 Endpoint. It is a path in the certain service for incoming
requests, such as HTTP URI path or gRPC service class +
method signature.

OAP Key Feature

Multiple telemetry sources
1. Language based Agent
2. Service Mesh Probe
3. Other eco-system, like Zipkin

Observability Analysis
Language

// Caculate p99 of both Endpointl and Endpoint2
Endpoint_p99 = from(Endpoint.latency).filter(name in ("Endpointl", "Endpoint2")).summary(0.99)

A compile language

EB(:()[)(BES // Caculate p99 of Endpoint name started with “serv’
serv_Endpoint_p99 = from(Endpoint.latency).filter(name like ("serv%")).summary(0.99)
(]
/\II // Caculate the avg response time of each Endpoint
. Endpoint_avg = from(Endpoint.latency).avg()
e Service e e e

// Caculate the histogram of each Endpoint by 50 ms steps.
// Always thermodynamic diagram in UI matches this metric.
Endpoint_histogram = from(Endpoint.latency).histogram(50)

e Servicelnstance
 Endpoint

< E; ! F‘ | 2 // Caculate the percent of response status is true, for each service.
erviceRelation Endpoint_success = from(Endpoint.x).filter(status = "true").percent()

° SerVICelnStanceRelatl // Caculate the percent of response code in [200, 299], for each service.
on Endpoint_200 = from(Endpoint.x).filter(responseCode like "2%").percent()

. . // Caculate the percent of response code in [500, 599], for each service.
o
EndeIntRelatlon Endpoint_500 = from(Endpoint.x).filter(responseCode like "5%").percent()

EXtendable Aggregation // Caculate the sum of calls for each service.
) EndpointCalls = from(Endpoint.*).sum()
Functions

https://github.com/apache/incubator-skywalking/blob/6.0/docs/e
and-designs/oal.md @ ServiceMesher | [TZullif

What is Service Mesh probe?

Metric from Service Mesh by native supported

Control Flane API

_ Control flow during
request processing Citadel

Config data to : \
Envoys | | TLScertsto

\ * Envoy

\

Policy checks,\\

telemetry

HTTP/1.1, HTTP/2, HTTP/1.1, HTTP/2,
gRPC, TCP with or gRPC, TCP with or
without TLS without TLS

Service A Service B

() ServiceMesher | [T2dniss

EFEIETN

Metric Data Structure

Service Names at both sides.

Service Instance Names at both sides.

Endpoint. URI in HTTP, service method full signature in gRPC.
Start Time. Request time.

Latency. In milliseconds.

Response code in HTTP

Status. Success or fail.

Protocol. HTTP, gRPC

DetectPoint. In Service Mesh sidecar, client or server. In normal L7 proxy,
value is proxy.

We need your star on GitHub

» https://github.com/apache/incubator-skywalking

.l apache /incubator-skywalking ® Unwatch~ 448 3,919 Fork 1,233

<> Code Issues 86 Pull requests 6 Insights

A distributed tracing system, and APM (Application Performance Monitoring) https://skywalking.incubator.apache.org/

apm distributed-tracing opentracing sky-walking

D 4,050 commits I 7 branches O 25 releases A2 46 contributors sfs Apache-2.0

Branch: master v New pull request Create new file Upload files Find file

Thanks

