
Feature Branching
Benoit Del Basso

Thoughtworks Open Party 2017.7.1

To branch or not to branch, that’s the question!

mailto:benoit.delbasso@gmail.com?subject=

Hello, I’m !

CTO @ My Little Paris
2012-2017

A newsletter for women, e-commerce box,
« good deal » apps and many many more…

Growth from 8 people to a media group
of 150 people / 30 M€ annual turnover

Business model: native advertising

Go French Yourself

Why am I in Wuhan?

In 💑 with a

Six-month break to get my kid
learning Chinese

Meanwhile
enjoying
and working on
my new startup
https://devflow.io

https://devflow.io

Feature Branching ?
So, let’s talk about

Feature Branching ?
A strategy about the

flow of commits

Often controversial

Feature Branching ?
An idea, something that brings

value to the users

Feature Branching
Creating a branch for every feature you work on

master

fA

fB

Feature Branching
Creating a branch for every feature you work on

master

fA

fB

pull / merge request

Feature Branching
Creating a branch for every feature you work on

master

fA
pull / merge request

Feature Branching
Creating a branch for every feature you work on

master

And merge only after it is reviewed
(I’m not talking about build outcome)

1. Both popular and controversial 2. Can be valuable when combined
with other practices

3. Common challenges & solutions
🤔

😍😩

⚙

🤑

4. A tour of SAAS tools

1. Both popular and controversial

Why is it popular?

• Lifecycle of an idea : Review process per feature

• Release flexibility

• Used in open-source projects

• Popular as « Github flow [link] »

• More and more support/tools around the concept of branch

😍

https://guides.github.com/introduction/flow/

Very controversial

1. Both popular and controversial

Vivid debate since 2011 :

« The death of continuous integration »

Some would say it is an « organizational anti pattern » [1] (Steve Smith)

While others write « why does Martin Fowler not understand feature
branches » [2] and that the two concepts can go together

😩

https://dzone.com/articles/organization-antipattern-build-feature-branching
http://www.apple.fr

1. Both popular and controversial

Martin Fowler:
« practice where members of a team integrate their work
frequently, usually each person integrates at least daily »

So what is Continuous Integration?

Weeks / monthHours

Continous Integration:
It’s a non-event

Differed integration (end of project)
Integration hell

1. Both popular and controversial

Most often associated to trunk-based development (everybody commits to master)

So what is Continuous Integration?

Credits: trunkbaseddevelopment.com

http://trunkbaseddevelopment.com

1. Both popular and controversial

In FB, you never commit directly to master, only merge to master

Feature Branching + Continuous Integration ?

=> How often do you merge to master?

=> The system does not force you to integrate, it
depends on your discipline

3. Common challenges & solutions
🤔

😍😩

⚙

🤑

4. A tour of SAAS tools

2. Can be valuable when combined
with other practices

1. Both popular and controversial

2. Valuable when combined with other practices

• Lean « Feature Branching »

• Automated (acceptance) testing

• A disciplined review process

A combination of practices

2. Valuable when combined with other practices

Lean « Feature Branching »

Always a working product:
• branch/and merge back to master
• no sub-branches

#1

2. Valuable when combined with other practices

Small steps ! (« Stories »)

A step = a day’s work

#2

Lean « Feature Branching »

2. Valuable when combined with other practices

If integration happens everyday => CI is not dead!

But it requires much discipline

Lean « Feature Branching »

Weeks / monthHours

Continous Integration
Differed integration (end of project)

Integration hell

Days

FB

2. Valuable when combined with other practices

Automated (acceptance) testing

If you don’t do it already => you should!

Build on every commit/every branch

Not only on the master branch

Gives confidence in refactoring
You known quickly when you’ve broken master

#3

2. Valuable when combined with other practices

A disciplined review process

Define minimal review
timeslots every day

e.g. every half-day before
starting work

#4

2. Valuable when combined with other practices

A disciplined review process

Monitor long-lasting
branches (2-3 days)
and act!

#5 • Git rebase

• Merge but act to hide in the UI

• Feature toggles « branch by abstraction »

2. Valuable when combined with other practices

Pull-Request / Review in detail

2. Valuable when combined with other practices

Pull-Request / Review in detail

2. Valuable when combined with other practices

(vs trunk-based development)
Advantages / Drawbacks

• Review process. Online, asynchronous

• Master is always deployable

• Leverage SAAS tools

• Small inventory of WIP commits

• Requires discipline (a lot)

• Won’t scale

2. Valuable when combined with other practices

Which one to try?

• Open-source

• Small teams with big portfolio of

projects

• When pair programming not possible

• Freelancer / web agency

• Co-located Commercial software

development

• Growing teams (7+ people)

• Strong product/release management

Trunk-based developmentFeature Branching

1. Both popular and controversial

3. Common challenges & solutions
🤔

😍😩

⚙4. A tour of SAAS tools

🤑
2. Can be valuable when combined

with other practices

3. Common challenges & solutions

Challenge 1: Epic feature (« too big to split »)

It’s NEVER too big to split

Grow the code with TDD in several simple features

Branching by abstraction « feature flags »

3. Common challenges & solutions

Challenge 2: Branching hell

Remember to branch only from master

Need to re-use code? refactor - rebase - continue

master

fA

fB

fC

3. Common challenges & solutions

Challenge 3: where to do manual testing / demo?

• On developer’s laptop?
• On a shared test environment?
• On the staging after merging?
• On a farm of test environments?
• On a disposable environment per branch?

1. Both popular and controversial

3. Common challenges & solutions
🤔

😍😩

⚙4. A tour of SAAS tools

🤑
2. Can be valuable when combined

with other practices

Why SAAS tools?

Free tier, fast to configure
Well integrated with Github/Gitlab

Handles the server management, updates and scaling
You can always switch to in-house/open-source solution later

4. A tour of (some) SAAS tools

Code hosting & reviewing

Github GitLab

4. A tour of (some) SAAS tools

Running automated tests

TravisCI

4. A tour of (some) SAAS tools

4. A tour of (some) SAAS tools

One environment per branch

Standalone In hosting offering Open-source

Gitlab Community
Edition (dynamic env.)BETA

4. A tour of SAAS tools

Code quality & security

DependencyCIScrutinizer

How do you do branching?
Any pain points with your current branching strategy?

I’d love to hear about it.

Thank you for listening!

