
Can we share nicely?
How to deal with noisy neighbors
Tony Luck
October 21st 2017

2

Agenda

Problem statement

Measuring

Control

Linux implementation

Results

3

Moore’s law means…

30

25

20

15

10

5

0

C
O
R
E
S

MORE CORES

JAN 04 JAN 06 JAN 08 JAN 10 JAN 12 JAN 14 JAN 16 JAN 18

70

60

50

40

30

20

10

0

L
3

C
A
C
H
E

And more cache

JAN 04 JAN 06 JAN 08 JAN 10 JAN 12 JAN 14 JAN 16 JAN 18

(MB)

But even though cache has grown as cores have been added, we sometimes see inconsistent performance

4

Let’s peek inside a cache

L3 CACHE

5

When things are going well

Core Core Core Core Core Core Core Core Core Core Core Core Core Core

6

When a “noisy neighbor” starts running

Core Core Core Core Core Core Core Core Core Core Core Core Core Core

7

Measuring

8

Conventional performance counters

Hardware increments a counter every time an event happens (e.g. cache miss)

Subtraction tells us how many events happened during the interval:
17760704 minus 12150615 = 5,610,089 events

2 5111 506

01 46 777 0

When the OS switches to run a task,
software reads the counter

Before switching to another task,
software re-reads the counter

9

Why conventional counters don’t help here

If we want to measure how much cache is being used by a process, counting
“cache hits”, “cache misses”, or “cache fills” doesn’t help us.

While a process
is running

It may load a new cache line, which may evict
another line owned by the same process. So
cache footprint is not increased.

Cache lines will be evicted by other processes
reducing the cache footprint.

When a process
isn’t running

10

RDT first concept: Resource Monitor ID: “RMID”

For each RDT event, hardware maintains an array of counters
• Number of counters is model specific, enumerated by CPUID

OS assigns an RMID to a task (likely multiple tasks)
• On each context switch the OS writes that RMID to the IA32_PQR_ASSOC MSR so

hardware knows which counter to use.

RMID

09

1254

llc_occupancy
counters

7645

Local memory
bandwidth counters

11

RMID in action – cache allocation

When we allocate a cache line, we increment the counter indexed by
IA32_PQR_ASSOC.RMID.

• Also save the RMID along with the data in the cache.

RMID

09

val++

RMIDDATA

Cache

llc_occupancy
counters

12

RMID in action – cache eviction/allocation

RMID2

09

val++

val--

RMID1DATA

Cache

llc_occupancy
counters

newDATA RMID2

13

RMID in action – memory bandwidth

As data is brought into or evicted from the cache, we increment a counter for
total memory bandwidth.

• If data comes from or goes to memory local to the current socket, we also
increment the counter for local bandwidth.

RMID

09

RMIDDATA

Cache

val++

total memory
bandwidth

val++

local memory
bandwidth

14

Implementation note

This is a useful “mental model” for how this works.
• Hardware doesn’t really store the whole RMID with every cache line … but to a

reasonable approximation everything acts as if it did.

RMIDDATA

15

Reading RMID event counters

Reading the RMID counters is a two step process.

EvtIDRMID

041 32 7

DATAUE

First software must specify
which event and which
RMID it wants to read in the
IA32_QM_EVTSEL MSR

Then it can read the
counter from the
IA32_QM_CTR MSR

16

CONTROL

17

RDT second concept: CLass Of Service ID: “CLOSID”

Another field in the same IA32_PQR_ASSOC MSR

RMID

09

CLOSID

3263

Resource1 Resource2

OS also assigns CLOSID to tasks
and context switch code

updates the MSR. Hardware
uses the CLOSID to identify

which control to apply to each
resource

18

Cache bitmasks

To control allocations within a cache, the control registers are bitmasks.
• Granularity is model specific (see CPUID). With 10 bits the cache might be divided

like this: 40% to one CLOSID. 20% to another. 40% unassigned.

1111000000 0000000011

CACHE

The mask only controls
new allocations. A process

may get a cache hit on
data already in any

location in the cache

NOTE

19

Use RDT to limit noisy neighbor to part of cache

Core Core Core Core Core Core Core Core Core Core Core Core Core Core

1 1 1 1 1 1 1 1 1 0

20

Control also applies to memory bandwidth

Instead of using bitmasks like we did with cache, we specify a percentage of
maximum bandwidth that can be used.

High-priority tasks may be allowed to use all available bandwidth

LOW-priority tasks can be throttled down to 30%, 20% or 10%
(model specific – see CPUID)

LINUX IMPLEMENTATION

22

First attempt at monitoring

In early 2015 (v4.1) patches using RDT via “perf” mechanism were merged.
To report how much cache a process was using Users could run:

perf stat –I 1000 –e intel_cqm/llc_occupancy/ …

In v4.6 more patches merged to add support to measure memory bandwidth.
But there were clues in the code that this wasn’t a good fit

After a couple of fix attempts, in v4.14 this code was removed and replaced.

/*
* Ignore the SDM, this thing is _NOTHING_ like a regular perfcnt,
* it just says that to increase confusion.
*/

23

First attempt at control

The story for the control parts of RDT was even sadder.

Initially almost everyone thought that it would be a logical progression to build on top of
the “cgroups” infrastructure.

Everyone except the cgroups maintainer.

Eventually, after a lot of code was written, and scrapped, and re-written, and scrapped
again, this approach was abandoned.

24

What is in Linux today: /sys/fs/resctrl

First merged into v4.10 this initially only supported the control side of RDT.
Some parts of the interface are similar to “cgroups”

• Use mkdir(1) to create new groups.

• Assign tasks to groups by writing the task-id to a “tasks” file.

But others are different.

• Groups are not hierarchical.

• Can control kernel threads as well as user tasks.

We start with all tasks in the root directory, using CLOSID == 0. We allocate a
new CLOSID to each directory, and use a “schemata” file in each to set the MSR
registers for each RDT resource.

25

How “schemata” file maps to h/w registers

Here are the contents of an example schemata file on a two socket machine
that supports both cache allocation and memory bandwidth allocation:

Assuming this was in the first subdirectory created, these values would be associated with
CLOSID = 1

L3: 0=ff;1=0f
MB: 0=90;1=10

RMID

09

CLOSID

3263

ff 90

L3CAT MBA

0f 10

L3CAT MBA

Socket 0 Socket 1

26

Using RDT on Linux

The number of CLOSIDs is usually fairly small (16 on some recent Intel® Xeon®
processors).

• You can bundle tasks sharing an RDT group. Often this happens naturally as you
want to apply the same class of service to an entire container or VMM guest.

On a multi-socket system you may be able to use sched_setaffinity(2) to bind
tasks in a group to only run on a specific socket.

• That can help avoid running out of CLOSIDs.

27

Monitoring (new implementation)

Once we had the /sys/fs/resctrl implementation for RDT control, people started
asking questions like:

• “How can I measure the aggregate cache occupancy of all the tasks in a group (to
see if they are using all of the cache I allocated to the group)?”

This turned out to be very difficult using the “perf” implementation. You would
need to attach a perf instance to each task in the group and sum the results:

• You’d need to keep track in case some of the processes forked new tasks

• You might run out of RMIDs

• Since all the perf instances were sampling independently, the results would be
very noisy.

28

Monitor files

The answer. Allocate an RMID along with the CLOSID for each directory. Add
some files in each directory so the user can read the counters:

mon_data

mon_L3_00 mon_L3_01

llc_occupancy mbm_local_bytes mbm_total_bytes

llc_occupancy mbm_local_bytes mbm_total_bytes

29

Drilling down inside a group

The next question people ask:

“I have hundreds of processes in a group and can see the sum of their
resource usage. How can I see which tasks within a group are using more
than their share?”

You can create monitor groups below the “mon_groups” directory in each
control directory and move one (or many) processes to that group.

• It is still part of the same control group. But now you have a set of monitor files to
look at a subset of the total.

• Since systems generally have many more RMIDs than CLOSIDs, you collect data
at a finer granularity.

Results

Intel® Resource Director Technology (Intel® RDT) -
University of California, Berkeley

Load Generator

Intel® Xeon® processor
E5-2695 v4

Ethernet

Virtual
Machine Monitor Qemu

Virtual
Machine
EndRE

EthernetEthernet …

Virtual
Machine
IPSec

Virtual
Machine
MazuNAT

Virtual
Machine

SNORT

LLC

• Network functions are executing simultaneously on isolated cores,
throughput of each Virtual Machines is measured

• Min packet size (64 bytes), 100K flows, uniformly distributed

• LLC contention causes up to 51% performance degradation in throughput

http://span.cs.berkeley.edu

Source: University of California, Berkeley

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases,
including the performance of that product when combined with other products. Configurations: see slide 31. For more complete information, visit http://www.intel.com/performance/datacenter.

Max.% throughput degradation, normalized

0 10 20 30 40 50 60

EndRE

IPSec

Suricata

Snort

Stats

MazuNAT

LPM

Firewall

Efficuts

Without cache allocation technology 2.2

6.2

12.8

33.3

46.1

51

37.6

2.2

4.9

Intel® Resource Director Technology (Intel® RDT) -
University of California, Berkeley

Load Generator

Intel® Xeon® processor
E5-2695 v4

Ethernet

Virtual
Machine Monitor Qemu

Virtual
Machine
EndRE

EthernetEthernet …

Virtual
Machine
IPSec

Virtual
Machine
MazuNAT

Virtual
Machine

SNORT

LLC

• Network functions are executing simultaneously on isolated cores,
throughput of each Virtual Machines is measured

• Min packet size (64 bytes), 100K flows, uniformly distributed

• VM under test is isolated utilizing CAT, 2 Ways of LLC are associated with
the Network function. Isolation only causes ~2% variation

http://span.cs.berkeley.edu

Source: University of California, Berkeley

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases,
including the performance of that product when combined with other products. Configurations: see slide 31. For more complete information, visit http://www.intel.com/performance/datacenter.

EndRE

IPSec

Suricata

Snort

Stats

MazuNAT

LPM

Firewall

Efficuts

With cache allocation technology 1.3

0.2

1.2

1.9

2.3

0

1.9

0

0.3

Max.% throughput degradation, normalized

0 10 20 30 40

33

Conclusion

Performance of tasks on a large core count processor can be affected by other
unrelated tasks competing for shared resources.

Intel® Resource Director Technology provides mechanisms to:

• Measure the amount of shared resources (L3 cache and memory bandwidth)
in use at the granularity of a single task

• Assign classes of service to tasks to limit the amount of shared resources
they can consume

Linux v4.14 has interfaces to these hardware features to measure and control
tasks

Q & A

