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Moore’s law means…
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But even though cache has grown as cores have been added, we sometimes see inconsistent performance
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Let’s peek inside a cache
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When things are going well
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When a “noisy neighbor” starts running
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Measuring
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Conventional performance counters

Hardware increments a counter every time an event happens (e.g. cache miss)

Subtraction tells us how many events happened during the interval:
17760704 minus 12150615 = 5,610,089 events

2 5111 506

01 46 777 0

When the OS switches to run a task, 
software reads the counter

Before switching to another task, 
software re-reads the counter
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Why conventional counters don’t help here

If we want to measure how much cache is being used by a process, counting 
“cache hits”, “cache misses”, or “cache fills” doesn’t help us.

While a process 
is running

It may load a new cache line, which may evict 
another line owned by the same process. So 
cache footprint is not increased.

Cache lines will be evicted by other processes 
reducing the cache footprint.

When a process 
isn’t running
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RDT first concept: Resource Monitor ID: “RMID”

For each RDT event, hardware maintains an array of counters 
• Number of counters is model specific, enumerated by CPUID

OS assigns an RMID to a task (likely multiple tasks) 
• On each context switch the OS writes that RMID to the IA32_PQR_ASSOC MSR so 

hardware knows which counter to use.

RMID

09

1254

llc_occupancy 
counters

7645

Local memory 
bandwidth counters



11

RMID in action – cache allocation

When we allocate a cache line, we increment the counter indexed by 
IA32_PQR_ASSOC.RMID. 

• Also save the RMID along with the data in the cache.

RMID

09

val++

RMIDDATA

Cache

llc_occupancy 
counters
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RMID in action – cache eviction/allocation

RMID2

09

val++

val--

RMID1DATA

Cache

llc_occupancy 
counters

newDATA RMID2
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RMID in action – memory bandwidth

As data is brought into or evicted from the cache, we increment a counter for 
total memory bandwidth. 

• If data comes from or goes to memory local to the current socket, we also 
increment the counter for local bandwidth.

RMID

09

RMIDDATA

Cache

val++

total memory 
bandwidth

val++

local memory 
bandwidth
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Implementation note

This is a useful “mental model” for how this works. 
• Hardware doesn’t really store the whole RMID with every cache line … but to a 

reasonable approximation everything acts as if it did.

RMIDDATA
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Reading RMID event counters

Reading the RMID counters is a two step process. 

EvtIDRMID

041 32 7

DATAUE

First software must specify 
which event and which 
RMID it wants to read in the 
IA32_QM_EVTSEL MSR

Then it can read the 
counter from the 
IA32_QM_CTR MSR
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CONTROL
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RDT second concept: CLass Of Service ID: “CLOSID”

Another field in the same IA32_PQR_ASSOC MSR

RMID

09

CLOSID

3263

Resource1 Resource2

OS also assigns CLOSID to tasks 
and context switch code 

updates the MSR. Hardware 
uses the CLOSID to identify 

which control to apply to each 
resource
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Cache bitmasks

To control allocations within a cache, the control registers are bitmasks. 
• Granularity is model specific (see CPUID). With 10 bits the cache might be divided 

like this: 40% to one CLOSID. 20% to another. 40% unassigned.

1111000000 0000000011

CACHE

The mask only controls 
new allocations. A process 

may get a cache hit on 
data already in any 

location in the cache

NOTE
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Use RDT to limit noisy neighbor to part of cache

Core Core Core Core Core Core Core Core Core Core Core Core Core Core

1  1  1  1  1  1  1  1  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
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Control also applies to memory bandwidth

Instead of using bitmasks like we did with cache, we specify a percentage of 
maximum bandwidth that can be used.

High-priority tasks may be allowed to use all available bandwidth

LOW-priority tasks can be throttled down to 30%, 20% or 10% 
(model specific – see CPUID)



LINUX IMPLEMENTATION
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First attempt at monitoring

In early 2015 (v4.1) patches using RDT via “perf” mechanism were merged.      
To report how much cache a process was using Users could run:

# perf stat –I 1000 –e intel_cqm/llc_occupancy/ …

In v4.6 more patches merged to add support to measure memory bandwidth.
But there were clues in the code that this wasn’t a good fit

After a couple of fix attempts, in v4.14 this code was removed and replaced.

/*
* Ignore the SDM, this thing is _NOTHING_ like a regular perfcnt,
* it just says that to increase confusion.
*/
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First attempt at control

The story for the control parts of RDT was even sadder. 

Initially almost everyone thought that it would be a logical progression to build on top of 
the “cgroups” infrastructure.

Everyone except the cgroups maintainer.

Eventually, after a lot of code was written, and scrapped, and re-written, and scrapped 
again, this approach was abandoned.
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What is in Linux today: /sys/fs/resctrl

First merged into v4.10 this initially only supported the control side of RDT. 
Some parts of the interface are similar to “cgroups”

• Use mkdir(1) to create new groups.

• Assign tasks to groups by writing the task-id to a “tasks” file.

But others are different.

• Groups are not hierarchical.

• Can control kernel threads as well as user tasks.

We start with all tasks in the root directory, using CLOSID == 0. We allocate a 
new CLOSID to each directory, and use a “schemata” file in each to set the MSR 
registers for each RDT resource.
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How “schemata” file maps to h/w registers

Here are the contents of an example schemata file on a two socket machine 
that supports both cache allocation and memory bandwidth allocation:

Assuming this was in the first subdirectory created, these values would be associated with 
CLOSID = 1

L3: 0=ff;1=0f
MB: 0=90;1=10

RMID

09

CLOSID

3263

ff 90

L3CAT MBA

0f 10

L3CAT MBA

Socket 0 Socket 1
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Using RDT on Linux

The number of CLOSIDs is usually fairly small (16 on some recent Intel® Xeon® 
processors). 

• You can bundle tasks sharing an RDT group. Often this happens naturally as you 
want to apply the same class of service to an entire container or VMM guest.

On a multi-socket system you may be able to use sched_setaffinity(2) to bind 
tasks in a group to only run on a specific socket. 

• That can help avoid running out of CLOSIDs.
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Monitoring (new implementation)

Once we had the /sys/fs/resctrl implementation for RDT control, people started 
asking questions like:

• “How can I measure the aggregate cache occupancy of all the tasks in a group (to 
see if they are using all of the cache I allocated to the group)?”

This turned out to be very difficult using the “perf” implementation. You would 
need to attach a perf instance to each task in the group and sum the results:

• You’d need to keep track in case some of the processes forked new tasks

• You might run out of RMIDs

• Since all the perf instances were sampling independently, the results would be 
very noisy.
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Monitor files

The answer. Allocate an RMID along with the CLOSID for each directory. Add 
some files in each directory so the user can read the counters:

mon_data

mon_L3_00 mon_L3_01

llc_occupancy mbm_local_bytes mbm_total_bytes

llc_occupancy mbm_local_bytes mbm_total_bytes
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Drilling down inside a group

The next question people ask:

“I have hundreds of processes in a group and can see the sum of their 
resource usage. How can I see which tasks within a group are using more 
than their share?”

You can create monitor groups below the “mon_groups” directory in each 
control directory and move one (or many) processes to that group. 

• It is still part of the same control group. But now you have a set of monitor files to 
look at a subset of the total.

• Since systems generally have many more RMIDs than CLOSIDs, you collect data 
at a finer granularity.
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Conclusion

Performance of tasks on a large core count processor can be affected by other 
unrelated tasks competing for shared resources.

Intel® Resource Director Technology provides mechanisms to:

• Measure the amount of shared resources (L3 cache and memory bandwidth) 
in use at the granularity of a single task

• Assign classes of service to tasks to limit the amount of shared resources 
they can consume

Linux v4.14 has interfaces to these hardware features to measure and control 
tasks
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