
Performance	tuning	in	BlueStore&RocksDB

Li	Xiaoyan	(Lisa),	Intel

1



Overview

2

DISK DISK DISK DISK DISK

OSD OSD OSD

MMM
M

Storage Node

Monitor Node

OSD OSD

ObjectStoreObjectStore ObjectStore ObjectStore ObjectStore

• ObjectStore is	to	store	data	in	
local	nodes.

• BlueStore is	default	object	
store.



BlueStore

• BlueStore =	Block	+	
NewStore

• Data	write	directly	to	raw	
block	device.

• Metadata	write	to	
Key/value	database	
(Rocksdb).

Ø Object	data
Ø Omap
Ø Deferred	logs
Ø others
• RocksDB is	above	light	

weight	file	system	BlueFS.

3



RocksDB

MemTableImmutable
MemTable

write

Memory

Disk

Compaction

.sstLevel	0

.sstLevel	1

Level	2 .sst

SSTable

.log

manife
st

current

• A	key-value	database,	
originated	by	Google,	
improved	by	Facebook.

• Based	on	LSM	(Log-
Structure	merge	Tree).

• Key	words:
Ø Active	MemTable
Ø Immutable	

MemTable
Ø SST	file
Ø LOG

4



BlueStore – small	write

• RocksDB acts	as	journal	
(deferred	IO).

• Customer	data	is	written	
to	RocksDB,	and	return	to	
OSD.

• Later	customer	data	is	
written	into	block	device.

• Deferred	IO	entry	is	
deleted	from	RocksDB.

5

STATE_PREPARE_txc_add_transaction/
add	deferred	io	to	kv	writebach STATE_AIO_WAITNo	aios

STATE_IO_DONE

_txc_finish_io	

STATE_KV_QUEUED Put	kv_queue
Kv_cond.notifySTATE_KV_SUBMITTED _kv_sync_thread/

_kv_finalize_thread

STATE_KV_DONE

_txc_committed_kv

STATE_DEFERRED_QUEUED_deferred_queue/
_kv_finalize_thread STATE_DEFERRED_CLEANUP

_txc_finish

STATE_DONE



BlueStore – big	write

• No	journal	is	needed.
• Customer	data	is	written	
into	a	new	space.

• Return	to	OSD	when	
metadata	is	written	into	
RocksDB.

• The	old	space	is	released.

6

STATE_PREPARE_txc_add_transaction STATE_AIO_WAIT_txc_aio_submit/
txc_aio_finish

STATE_IO_DONE

_txc_finish_io	

STATE_KV_QUEUED Put	kv_queue
Kv_cond.notifySTATE_KV_SUBMITTED _kv_sync_thread/

_kv_finalize_thread

STATE_KV_DONE

_txc_committed_kv

STATE_FINISHING _txc_finish

STATE_DONE



OSD	tuning	1

OSD

bluestore_lat others

• 4k	random	writes.
• With	default	config (Perf	dump	

data):	top	chart.
• BlueStore finisher	is	single-

thread	by	default.
• After	setting	

bluestore_shard_finishers:	
bottom	charts.

40

45

50

IOPS(k)

4k_randw 4k_finsiher_false

7



OSD

bluestore_lat others

BlueStore

others

OSD

bluestore_lat others

Write	IO	time	span

• Get	time	span	from	perf	dump.

• OSD	total	latency:	from	OSD	
handles	a	IO	in	Messengers	to	
commit	the	IO.

• BlueStore latency:	from	BlueStore
gets	a	IO	to	commit	te IO	to	OSD.

• Note:	Left	4k	random	writes,	right	16k	
random	writes

BlueStore

others

8



0

20

40

60

256 128 64

IOPS(k)

256 512 768

• Keep	total	memory	usage	
consistent.

• RocksDB options:	
Ø min_write_buffer_num

ber_to_merge (default	
1)

Ø write_buffer_size
(default	256MB),	
changed	to	128,	64.

• 4k	random	writes.

Random	write	tuning

9



• Increase	total	memory	
usage	consistent.

• RocksDB options:	
Ø max_write_buffer_num

ber (default	8)
• The	improvement	is	little.
• 4k	random	writes.

Random	write	tuning	– cont.

40
42
44
46
48
50

IOPS(k)

10



0

100

200

300

1 39 77 11
5

15
3

19
1

22
9

26
7

30
5

34
3

38
1

41
9

45
7

49
5

53
3

57
1

60
9

64
7

68
5

Data written into db

plogs ologs dlogs mlogs others

0

50

100

1 47 93 13
9

18
5

23
1

27
7

32
3

36
9

41
5

46
1

50
7

55
3

59
9

64
5

69
1

73
7

L0 SST

plogs ologs dlogs others

Random	write	– 4k

• When	data	is	written	into	
RocksDB,	it	is	added	into	
memTables.

• Once	flush	condition	is	
triggered,	data	in	memTables	
are	flushed	into	L0	SST	files.

• Deferred	logs	are	main	data	in	
every	memTable	while	object	
data	are	main	data	in	L0	files.

11



Random	write	– 16k

0
100
200
300

1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

16
9

Data written into db

plogs ologs dlogs mlogs others

0
100
200

1 14 27 40 53 66 79 92 10
5

11
8

13
1

14
4

15
7

17
0

18
3

L0 SST

plogs ologs dlogs others

• Similar	data	as	4k	random	
writes.

• Object	data	are	main	data	
both	in	every	memTable	
and	every	L0	SST	file.

12



SST2

• Random	writes	4k/16k.
• Add	a	flush	style:	to	delete	

duplicated	entries	recursively.
• Performance	is	similar	as	

merge	num =	2,	but	data	
written	into	L0	is	decreased.	
(5G	per	10mins)

RocksDB - Flush	data	recursively.

0

20

40

60

4k 16k

IOPS(k)

Default dedup_2

Merge Merge

memtable1 memtable2 memtable3 memtable4

memtable1 memtable2 memtable3 memtable4

Dedup

Old:

New:

SST1

SST1 SST2 SST3 SST4



14

Future	work

• RocksDB is	still	heavy	for	pg logs,	object	data.
Ø For	pg logs	data,	they	are	written	once,	and	read	when	

the	OSD	node	gets	recovery.
Ø For	object	data,	one-time	journal	may	be	enough.



15

Thanks	&	QA



16

Backup	– Test	config

• Hardware
• Memory:	128G
• CPU:	Intel(R)	Xeon(R)	CPU	E5-2699	v4	@	2.20GHz
• Disk:	Intel	P3700	400G

• Software
• Ceph	master	branch	

@f584df78c294b11baa7527d8eab0874ae6a2b809
• Config

• A	OSD,	a	monitor,	and	a	manager.


